Monday, June 23, 2008

Inhaling bubbles of nano iron Oxide to fight lung cancer

Inhalation, or respiratory, therapy is a fairly old discipline of medicine that dates back to ancient times (and not always for purely therapeutic effects; witness the hookah). In the late 18th century, earthenware inhalers became popular for the inhalation of air drawn through infusions of plants and other ingredients and about 50 years ago the first pressurized metered dose inhaler was put on the market. Especially people suffering from asthma are very familiar with inhalers - devices that help deliver a specific amount of medication to the lungs. The delivery of drugs via the pulmonary route is a potentially effective form of therapy not only for asthma but also for for patients with other chronic diseases, including the debilitating hereditary disease, cystic fibrosis, type I diabetes (insulin is absorbed well through the lungs), and recently lung cancer. During inhalation therapy the drugs are delivered in aerosol form, meaning that very small particles of the drug are suspended in air (liquid particles make mist, solid particles make fume or dust). Unfortunately, state the-of-the-art aerosol delivery technologies do not allow to target aerosols to specific regions of the lung. Researchers in Germany now have show that aerosols containing magnetic nanoparticles can be guided inside the lungs and thus offer a potential new route for lung cancer treatment.
Current aerosol delivery techniques only allow to target aerosol deposition in the central lung regions or lung periphery but not focused to desired lung regions. A new research effort by German researchers was designed to provide a potentially new technology to close this gap and to offer potentially more gentle treatment options for patients suffering from severe lung diseases such as lung cancer. At first glance it might seem weird that lung cancer, which very often is caused by inhaling carcinogenic particles found in polluted air and tobacco smoke, can be treated by just inhaling some more particles. Although aerosol therapy does work to some degree (
" Aerosol Therapy for Malignancy Involving the Lungs"), as with all other current cancer drug therapies there are side effects caused by the administered drugs' damage to healthy tissue.
"Being able to target specific areas in the lung with cancer drug aerosols would avoid potential drug-related site effects in healthy tissue "
Dr. Carsten Rudolph explains,"We were able to demonstrate theoretically by computer-aided simulation and for the first time experimentally in mice, that targeted aerosol delivery to the lung can be achieved with aerosol droplets comprising superparamagnetic iron oxide nanoparticles (SPIONs), so-called nanomagnetosols, in combination with a target-directed magnetic gradient field."
Rudolph, together with colleagues from various universities in Munich and Berlin, and other institutions across Germany, shows that with their technique, higher doses of drugs can be delivered to the cancerous region without increasing side effects (
"Targeted delivery of magnetic aerosol droplets to the lung").

No comments: